
Honors Thesis

USING DEEP LEARNING TECHNIQUES TO FIND THE 4D SLICE GENUS OF

A KNOT

by

Dylan Skinner

Submitted to Brigham Young University in partial fulfillment of graduation

requirements for University Honors

Mathematics Department

Brigham Young University

November 2023

Advisor: Mark Clifford Hughes

Honors Coordinator: Davi Obata

i

Abstract

USING DEEP LEARNING TECHNIQUES TO FIND THE 4D SLICE GENUS OF

A KNOT

Dylan M. Skinner

Mathematics Department

Bachelors of Science

Deep reinforcement learning (DRL) has proven to be exceptionally effective in

addressing challenges related to pattern recognition and problem-solving, particularly

in domains where human intuition faces limitations. Within the field of knot theory, a

significant obstacle lies in the construction of minimal-genus slice surfaces for knots of

varying complexity. This thesis presents a new approach harnessing the capabilities

of DRL to address this challenging problem. By employing braid representations of

knots, our methodology involves training reinforcement learning agents to generate

minimal-genus slice surfaces. The agents achieve this by identifying optimal sequences

of braid transformations with respect to a defined objective function.

ii

Contents

Title i

Abstract ii

Table of Contents iii

1 Introduction 1

2 Knot Theory 1
2.1 Introduction to Knot Theory . 1
2.2 Braids, Surfaces, and Braided Surfaces 4
2.3 Slice Surfaces and Slice Genus . 13

3 Reinforcement Learning 17
3.1 Introduction to Reinforcement Learning 17
3.2 Proximal Policy Optimization . 19

4 Our Problem and Approach 21
4.1 Using PPO . 24

5 Results 27

6 Future Work 33

7 Appendix 36
7.1 Model Architecture . 36

iii

1 Introduction

In this thesis, we tackle the challenging problem in knot theory of determining the

minimal genus of slice surface bounded by a given knot (section 2.3). To address

this problem, we employ cutting-edge reinforcement learning algorithms, specifically

leveraging the Proximal Policy Optimization (PPO) algorithm, to interact with a

custom OpenAI Gym environment (sections 3.1, 3.2).

In order to introduce the problem and our approach, we build foundational knowl-

edge in a few key areas. This includes an exploration of fundamental concepts in knot

theory (section 2.1); braids, and Seifert surfaces (section 2.2). We also introduce slice

surfaces, a critical aspect of the minimal slice genus problem (section 2.3). Addi-

tionally, we provide an overview of reinforcement learning, including Markov decision

processes (section 3.1), and an exploration of the PPO algorithm (section 3.2).

2 Knot Theory

2.1 Introduction to Knot Theory

When a non-mathematician thinks of a knot, they typically think about taking a

piece of string and tying the two ends together in some specific way. In mathematics,

knots are thought of differently. Instead of taking a piece of string and tying the two

ends together, a mathematical knot can be thought of by taking the two ends of a

necklace, tying a knot in the middle of the necklace, and then clasping the two ends

together. This results in a knotted loop where the only way to untangle the knot in

the middle of the necklace is to cut the necklace and remove the knot. Put another

way, a knot is a knotted loop of string except that we think of the string as having no

thickness, and its cross-section being a single point [1]. Similarly, a link is a collection

of multiple knots linked together.

1

Figure 1: Three of the most basic knots that are used. On the left we have the
unknot, the middle is 31 (the trefoil knot), and the right is 41 (the figure 8 knot).

An important idea in knot theory is that there is no distinction between any

particular configuration of a knot. In other words, if you take a knot and deform it

in some way without passing it through itself or by cutting the string, the resulting

knot is thought of as being the same as the original one. But, one problem arises

from this idea. How can we tell when two different-looking knots are equivalent?

Before looking at the mathematical equivalence of knots, it is important to under-

stand a few key terms. The first is projection. Knots live in three-dimensional space.

However, it is often convenient to describe them using two-dimensional pictures.

These two-dimensional pictures are obtained by projecting the three-dimensional knot

onto a two-dimensional plane. If you were to take two ‘different’ projections of the

same knot to a plane and create a model of one of those projections out of string,

you should be able to rearrange the string into the second projection without cutting

the string. This idea of rearranging the string in 3-dimensional space is something

knot theorists call an ambient isotopy. Ambient refers to the fact that the string is

being deformed in three-dimensional space, and isotopy the deformation of the string.

When deforming a knot projection, knot theorists use the term planar isotopy, with

planar referring to the fact that the knot is only being deformed within the projection

plane.

This idea of isotopy is important in determining the equivalence of knots. Al-

though two knots are considered equivalent if you can change one knot into the other

by stretching it and moving it around without tearing it or causing the knot to inter-

2

Figure 2: Here we have the knot 51 in two different configurations. While these knots
have been stretched in different ways, they are clearly ambient isotopic and their
projections are planar isotopic.

sect with itself, it is not immediately clear how this idea of 3-dimensional equivalence

translates to 2-dimensional projections of the knot. In fact, it is a theorem that two

knots are equivalent if and only if the projection of one knot can be transformed into

that of another knot through a finite sequence of Reidemeister moves, as defined in

Reidemeister’s theorem below.

Reidemeister’s Theorem (Chapter 1.4 [1])

Two links are ambient isotopic if and only if their diagrams can be joined by a

sequence consisting of planar isotopies and the following three Reidemeister moves

(see Figure 3):

I. Twist and untwist in either direction.

II. Move one strand over another.

III. Move a strand completely over or under a crossing.

Reidemeister moves represent three different changes that can be made to a knot

projection which do not change the equivalence class of the knot itself. The first Rei-

3

Figure 3: Move I (Left), Move II (Middle), Move III (Right)

demeister move (or Reidemeister move I) is done by twisting or untwisting the knot.

This twist will create another crossing but does not change the knot. Reidemeister

move II is done by pushing one strand above or below another strand. This push can

be used to create two new crossings, or remove two existing crossings. Reidemeister

move III involves sliding a strand from one side of a crossing to the other side of that

same crossing. This will not change the number of crossings present.

These Reidemeister moves are often referred to as twisting (move I), poking (move

II), or sliding (move III) a knot, and represent the only three ways to change the

projection of a knot, together with planar isotopy, without changing the knot itself.

These moves are named after Kurt Reidemeister, a German mathematician, who

proved in 1926 that if there are two distinct projections of the same knot, one can be

transformed into the other by a sequence of these three moves and planar isotopy.

2.2 Braids, Surfaces, and Braided Surfaces

In knot theory, knots can be represented in many different ways besides using the

planar projections described above. One of these ways is using braid closures. Braids

are particularly helpful because every knot can be described as the closure of a braid.

A braid is a set of n strings that are attached to a horizontal bar at the top and the

4

bottom and which travel monotonically downwards (see Figure 4). These strings can

cross over or underneath each other, but they cannot loop back up. Another way of

putting this is that each string can cross any horizontal plane only one time. We let

Bn denote the set of all braids with n strands.

Figure 4: An example of a braid. Braids can have any number of strings and any
number of crossings.

Similar to knots, there is a notion of equivalency for braids. In order to see that

two braids are equivalent, we must be able to rearrange the strings of the braid

without removing the strings from the top or bottom bar, and without allowing the

strings to pass through each other or themselves.

Figure 5: Even though these braids are not completely the same, since you can apply
a series of Reidemeister moves to one and get the other, they are equivalent.

5

When we have a braid, we can turn that braid into a knot by connecting the top

and bottom bars together. The resulting form is a knot or a link, and this is called

the closure of the braid (see Figure 6).

Figure 6: On the left, we have a braid. On the right, we have the closure of this
braid, which is a knot.

As mentioned previously, one nice feature of braids is that every knot can be rep-

resented as the closure of a braid. This helpful fact was proven by J.W. Alexander in

1923 and is known as Alexander’s Theorem.

Alexander’s Theorem (Chapter 5.4 [1]

Every knot or link can be expressed as the closure of a braid.)

Simple as this theorem may be, it is incredibly helpful for working with knots.

Since every knot can be represented as a braid closure, we have another useful way

of studying and classifying knots. In the same vein, one useful quantity to consider

when thinking of knots as braid closures is the braid index.

The braid index of a knot is defined to be the fewest number of strings in a braid

whose closure is the knot of interest [1]. For example, the unknot (which is simply a

circle) has a braid index of 1 since it can be expressed as the closure of a braid with

a single strand (and no crossings).

6

Figure 7: On the left, we have the simplest diagram of the unknot. On the right, we
still have the unknot, but as the closure of a two strand braid with a single crossing.
This simple example shows that different braids can have the same closure.

While calculating the braid index seems simple, it can actually be quite tricky. If

we represent a knot in braid form and then count the strings of the braid, it does not

guarantee that we have achieved the least number of strings possible for that knot.

Counting the strings of a braid representative can certainly give us an upper bound

on the braid index, but finding the actual minimal braid index requires more work.

In order to fully describe a braid, we look first at its projection. Once we have

the projection of the braid—and ensure that no two crossings occur at the same

height—we describe the braid by listing the strings that cross over and under other

strings as we move toward the bottom bar. We always label the crossings from left

to right. When the first string crosses under the second string, we call this crossing

a σ1 crossing. On the other hand, if the first string crosses over the second string,

we call this crossing a σ−1
1 crossing. If the second string crosses under the third, it

is a σ2 crossing, and if the second string crosses over the third, it is a σ−1
2 crossing.

This pattern continues, with a crossing of the jth strand passing under the (j + 1)th

7

strand being labeled as σj, while σ
−1
j denotes the jth strand passing over the (j+1)th

strand. To describe a braid then we simply start at the top of the braid, and list off

the crossings we encounter as we travel from top to bottom. We call the resulting

sequence of crossings a braid word.

σ−11

σ2

σ−11

Figure 8: The braid word for this braid is σ−1
1 σ2σ

−1
1

If we look at the braid in Figure 8, we can see that by listing the crossings from

top to bottom, we obtain the braid word σ−1
1 σ2σ

−1
1 .

Along with giving a convenient way to describe the braid, there are other advan-

tages to using braid representations of knots. One advantage is identifying which

Reidemeister moves can be applied to simplify the braid. For example, if a braid

word contains σkσ
−1
k , we know that the kth string goes under the (k + 1)th, and then

immediately passes back underneath of it, returning to its original position. If we ap-

ply a simple Reidemester II move to this pair of crossings, the strings will straighten

out and we are left with an equivalent braid (see Figure 9).

For a more complicated example, say we have the braid word σ1σ3σ2σ
−1
2 σ−1

3 σ4σ3.

Through a series of Reidemester II moves, we can take this word and simplify it to

8

Figure 9: A Reidemester II move applied to a braid.

σ1σ3σ
−1
3 σ4σ3, and then further to σ1σ4σ3. This leaves us with a much simpler braid

word which represents a braid that is equivalent to the original braid.

Another modification we can apply to braid projections is the Reidemeister III

move. If we are given a braid projection and wish to move a strand over or under

a crossing we are allowed to do this since a string does not need to be cut in the

process. In general if you braid word contains σiσi+1σi, for 1 ≤ i ≤ n − 2, then it

can be replaced using the substitution σiσi+1σi = σi+1σiσi+1 (see Figure 10, where

the equivalent substitution σ−1
i σ−1

i+1σ
−1
i = σ−1

i+1σ
−1
i σ−1

i+1 is illustrated).

The final move that we can apply to braid projections is not a Reidemeister move;

instead, it is a switch. If our braid word contains σiσj, where |i− j| > 1, then we can

switch the order of σi and σj. So σiσj becomes σjσi (see Figure 11).

Using these three moves allows us to determine when two braids b1 and b2 are

equivalent. This ideas leads to another very important theorem for working with

braids: Markov’s theorem.

9

σ−1i

σ−1i+1

σ−1i

σ−1i+1

σ−1i

σ−1i+1

Figure 10: An example of a Reidemeister III move being applied to a general braid.

Figure 11: On the left we have σ−1
1 σ−1

4 . Since |1− 4| > 1, we can switch the order to
σ−1
4 σ−1

1 .

10

Markov’s Theorem [2]

Given two braid words βn ∈ Bn, β
′
m ∈ Bm with n and m strands respectively, their

closures are equivalent links if and only if β′
m can be obtained from βn by applying a

sequence of the following operations:

1. conjugating βn in Bn;

2. replacing βn by βnσ
±1
n ∈ Bn+1;

3. the inverse of the previous operation (if βn = βn−1σ
±1
n with βn−1 ∈ Bn−1, replace

βn with βn−1).

In Markov’s theorem, we learn about two new moves that can be applied to

braids to obtain different braids with equivalent closures. The first comes in part

1: conjugation. Conjugation is an operation applied to the braid word where the

beginning of the word is multiplied by σj, and the end of the word by σ−1
j , or vice-

versa. In the closure we are only adding a Reidemeister II move, so we are not

changing the resulting knot type (see Figure 12).

Figure 12: If we were to connect this braid into a knot and move the bottom crossing
near the top crossing, we would see that it is simply a pair of crossings that can be
removed by a Reidemeister II move.

11

The second move comes in part 2: stabilization. Stabilization involves adding

a new strand and a single crossing to a braid as illustrated in Figure 13. This is

performed by taking the braid word w that corresponds to an n-string braid, adding

a strand to make it an (n+1)-string braid, and then adding σn or σ−1
n to the beginning

or end of the word w. Destabilization is the opposite of stabilization: simply remove

a string and a crossing from a braid as shown in Figure 14 below.

Braid
w

Braid
wσn

σn

Figure 13: Through adding a single strand and crossing σ±1
n at the end of the braid

representation, we obtain a different braid with equivalent closure.

Braid
wσn

Braid
w

σn

Figure 14: Through removing a single strand and crossing σ±1
n at the end of the braid

representation, we obtain a different braid with equivalent closure.

12

2.3 Slice Surfaces and Slice Genus

In the results to follow, one important idea to understand is that of a topological

surface (or simply a surface). A topological surface is a two-dimensional manifold,

intuitively representing a flat, rubbery sheet that can be stretched, bent, and manip-

ulated without tearing or gluing. Surfaces can be orientable, which simply means you

can distinguish between the ‘front’ and ‘back’ of the surface.

An important piece of information about an orientable surface is its genus. The

genus of a surface is a fundamental topological invariant describing the shape and

structure of the surface. Intuitively, it can be thought of as the number of “han-

dles” or “holes” that a surface possesses (see Figure 15). Every orientable surface is

topologically equivalent some surface with specified genus.

Figure 15: The left most surface has genus 0 (no holes), the middle surface has genus
1 (one hole), and the right most surface has genus 2 (two holes).

If we take an orientable surface and cut a hole in it, we then get a surface with

boundary. Given a knot K, we can always find a surface with boundary whose

boundary is the knot K [5]. Such a surface is called a Seifert surface for K. More

precisely, a Seifert surface is an oriented surface associated with a knot or link on its

boundary in three-dimensional space (see Figure 16).

One of the ultimate goals of representing knots in this way is to find the simplest

surface possible to represent a given knot, which is not always obvious. For example,

the minimal genus of a Seifert surface bounded by a certain knot may be 3, but an

explicit minimal genus surface might be difficult to find. Thankfully, the Seifert genus

13

Figure 16: This is a Seifert surface. The white and blue represents the surface. You
can see it is orientable because there is a clear distinction between the front and
back of the surface (shown by the two colors). The orange is the knot that is on the
boundary of the surface.

R2

R3

Figure 17: R2 represents the boundary of R3, which in this example is a cube.

(which is defined as the minimal genus of a Seifert surface bounded by the knot) is

relatively easy to calculate.

Now suppose that you have knot that bounds a surface in R3 of genus 2, but would

like to construct a surface that it bounds with genus 1. One possible solution is that

14

R2

R3

Figure 18: Here we have a knot in R2, with a surface in R3
+. Since the knot is in R2,

there are no crossings; it’s just a circle.

instead of requiring the surface to live entirely inside R3, we can allow it to dip into

R4. Just as we can think of R2 being the boundary of R3
+ = {(x, y, z) ∈ R3 | z ≥ 0}

(see Figure 17), we can think of R3 as being the boundary of R4
+ = {(x, y, z, t) ∈

R3 | t ≥ 0}. Given a knot K in R3 we can therefore consider surfaces in R4
+ that

are bounded by K. These surfaces that dip into R4
+ are called slice surfaces, and

the slice genus of a knot is the minimal genus of any slice surface you can find for

that knot. Unfortunately, the slice genus is much more difficult to calculate than the

Seifert genus.

R3

R4
+

Figure 19: Here is the trefoil knot in R3, and a slice surface it bounds in R4
+

Since visualizing R4 is quite difficult, representing slice surfaces can be a bit of a

problem. One way to overcome this is by looking at level sets. Level sets are a way

of representing a slice surface in R4
+ by taking a ‘slice’ out of the surface at various

15

levels and seeing what the surface looks like at the location of the slice. One dimension

lower, taking level sets of a surface in R3 yields a sequence of two-dimensional planes

each containing a single slice of the surface. If you take enough of these level sets you

will be able to get the full picture of the surface (see Figure 20).

Figure 20: The left most part of this figure is the surface inside R3. By taking level
sets of this surface, we can obtain an accurate representation of the surface.

To take level sets in R4 we do the exact same thing as in R3. The only difference

is now the level sets are each 3-dimensional slices with knots inside, instead of 2-

dimensional planes with planar curves.

When studying the level sets of a slice surface in R4
+ there are a finite number

of ways the level sets may change from one picture to another. If the surface has a

saddle point then passing the saddle point will change the level sets by bringing two

nearby strands together and merging them (see the change that happens between the

fourth and fifth diagrams in Figure 21 below). In this context, we define a saddle

point to be a point on the surface where the curvature takes on both positive and

negative values along different directions. If the surface has a local minimal point,

then passing the mimimal point will result in a single circle being deleted from the

level set (in Figure 21, the two circles in the final level set sit just above a pair of local

maxima, and passing these maximum points results in the two circles being deleted

from the level set). Likewise, if the surface has a local maximum point, then passing

the maximum point results in a single circle being added to the level set.

16

Figure 21: Here is an example of a surface being represented by cross-sections.

3 Reinforcement Learning

3.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that allows an agent

to interact with an environment that it is placed in and to learn from the results of

its interactions. When the agent is placed into an environment it is given a set of

actions that it is allowed to take, which is how it interacts with the environment. The

goal of reinforcement learning is to train the agent in such a way that it learns to

select actions that yield optimal results given whatever situation it is in. As a simple

example, consider the Atari game Breakout. The goal of the game is to break all

the bricks in the level, which is done by using the paddle to hit a ball at the bricks.

Tackling this problem using reinforcement learning, the agent controls the paddle and

learns to move it in the most efficient way to break the bricks.

When an agent begins training, it is passed a starting state s0 from the envi-

ronment. The agent looks at this state, thinks about what it knows (which in the

beginning is nothing), and selects an action a0. This action is then sent back to the

environment, analyzed, and assigned a reward r0 based on the effect of the action on

the environment. The environment then creates the next state s1, and sends it and

the reward r0 back to the agent. This cyclical pattern occurs until the agent achieves

the goal, fails, or some pre-determined number of time steps is reached.

A useful way to model this situation is as a Markov Decision Process (MDP),

defined as (S,A,R,P, γ), where S is the set of states, A is the set of actions, R is the

distribution of rewards, P is the transition probabilities, and γ is the discount factor.

17

Figure 22: The Atari 2600 version of Breakout.

Reinforcement learning agents must learn decision making strategies not only in sit-

uations where actions create immediate rewards, but actions which impact rewards

far into the future. In an MDP the current state st tells us everything we need to

know about the environment we are working in (this is called the Markov property).

This is beneficial because there is no risk of filling up memory, but can be detrimental

because all information about the past is essentially forgotten.

The goal of the agent utilizing the MDP is to pick an action to maximize the

reward. To do this, the agent uses a policy π which is a function that maps S to

A, represented as π : S → A (in some cases it is more useful to think of A as a

probability distribution across all actions, conditioned on the current state st). This

function will pick an action based on the state the agent is in. Our hope is to find

the best policy π∗ that will maximize the cumulative possible reward for the agent∑T
t=0 γ

trt (here the discount factor γ is included so future rewards are not considered

18

as heavily as current rewards). But this is a difficult task.

Through the work of researchers many different algorithms—both classical and

ones that rely on deep learning—have been created to aid in finding π∗ in the most

efficient way possible. These algorithms are either policy or value-based, with cur-

rent research showing that policy-based methods often learn faster than value-based

approaches.

There have been several successful policy-based methods presented by researchers,

but one algorithm currently at the forefront of research and application which we will

utilize here is Proximal Policy Optimization (PPO).

3.2 Proximal Policy Optimization

The PPO algorithm, developed by OpenAI, seeks to strike a balance between ease of

implementation, sample complexity, and ease of tuning; all of which posed challenges

to earlier algorithms (see [4]). PPO does this by trying to compute an update at

each step that both minimizes the cost function and only slightly deviates from the

previous policy. This ensures that the agent does not take too big of steps and goes

off track, but does not take steps that are too small which may lead to the agent

going nowhere.

In order for this to work, the algorithm utilizes two separate policy neural net-

works—the current policy πθ(at|st), and the older policy πθk(at|st)—and a rather

unique objective function:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where

• θ is the policy parameter.

19

• Êt is the expected value (calculated by taking the average over a sequence of

actions).

• rt(θ) is the probability ratio, or the ratio of the current policy over the older

policy, πθ(at|st)
πθk

(at|st) . If rt(θ) > 1, it indicates that the new policy has a higher

probability of selecting at than the old policy. If it is less than 1, the new policy

has a lower probability.

• Ât is the estimated advantage at time step t, calculated as Ât = Rt − V (st),

where Rt is the reward from the most recent action, and V (st) is the estimate

of return starting from current state st, and

• ϵ is a hyperparameter setting the size of the epsilon-neighborhood for step size.

One thing that makes this loss function interesting are the components inside of

the minimization function. The first part, rt(θ)Ât, is simply the probability ratio

times the advantage. This is done to determine how much to update the policy for a

specific action in a specific state as it quantifies the advantage of the action at taken

in state st and its relative likelihood under the new and old policies. The second

part, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât, is a little bit different. If our new policy has a much

higher probability of selecting at than our old policy, then rt(θ) ≫ 1. Similarly, if

our new policy has a much lower probability of selecting at than our old policy, we

have rt(θ) ≪ 1. This can be an issue because it can cause our algorithm to take a

step too far in the wrong direction, potentially ruining its learning. The clip function

ensures all of our steps stay in a specified range. More specifically, if rt(θ) < 1− ϵ or

rt(θ) > 1 + ϵ, the new value of rt(θ) becomes 1− ϵ or 1 + ϵ, respectively.

Once rt(θ) and clip(rt(θ), 1− ϵ, 1 + ϵ) are calculated, LCLIP selects the minimum

of the two, and then finds the expected value of that result, thus allowing us to find

the optimal step size.

20

Algorithm 1 PPO

for iteration= 1, 2, . . . do
for actor= 1, 2, . . . , N do

Run policy πθk in environment for T timesteps

Compute advantage estimates Â1, . . . , ÂT

end for
Optimize LCLIP with respect to θ, with K epochs and minibatch size M ≤ NT
θk ← θ

end for

When the PPO runs, it starts off by running the old policy πθk , N times for T time

steps. For each n ∈ N iterations, the advantage Ât is calculated for each t ∈ T . Once

the N iterations are over, LCLIP is optimized with respect to θ, and then πθk ← πθ.

In addition to these two policy networks, PPO also utilizes a value network. The

value network is another neural network model used to estimate the expected cumu-

lative reward (value) associated with a given state. It is used to assess the quality

of states and provide feedback for policy improvement. There is only one of this

network–not two networks like with the policy network.

4 Our Problem and Approach

One difficult problem in knot theory is finding the minimal genus of slice surfaces

bounded by a given knot. Fortunately, the problem of constructing a minimal genus

slice surface can be formulated as an MDP. That is, through a series of prescribed

actions, rewards, and penalties, we can try to train an RL agent to find the minimal

genus slice surface of a knot. We created an OpenAI Gym environment to allow a deep

reinforcement learning agent to try and tackle this minimal slice surface problem.

In our environment, knots are represented by their braid words. For example,

the knot whose braid word is σ1σ3σ
−1
2 σ1 is represented as [1, 3,−2, 1]. A cursor is

instantiated on this representation that allows that agent to focus on and interact

with a specific part of the braid. The ‘row’ cursor allows the agent to focus on a

21

specified crossing, while the ‘column’ cursor allows the agent to focus on a specific

strand.

Figure 23: When calling env.render(), our environment produces the following figure.
This is what the braid word σ1σ3σ

−1
2 σ1 looks like. The cursor starts off at the first

possible location for a crossing even if there is no crossing at that spot.

Before going into the moves our agent can take, we briefly describe an important

topological invariant of surfaces, namely the Euler characteristic of a surface. The

Euler characteristic of an oriented surface with single boundary component is related

to the genus of the surface by the formula g = 1
2
(1 − χ), where g is the genus and

χ is the Euler characteristic. In our MDP it is more convenient to track the Euler

characteristic instead of the genus directly. Our goal of minimizing the genus of the

surface we create therefore implies that we want to maximize the resulting Euler

characteristic. The Euler characteristic is a fixed value for every surface, with the

disk having Euler characteristic 1 and punctured torus having Euler characteristic

−1, just to name a few. It is important to note that most surfaces have a negative

Euler characteristic.

In our environment there is a set of distinct moves available for manipulating the

braid structure. These moves include: 1: “Move Down” and 2: “Move Up” to move

22

the cursor vertically within the braid; 3: “Move Left” and 4: “Move Right” for mov-

ing the cursor laterally; 5: “Cut Strand” cuts the entire braid at a point and moves

the bottom half to the top; 6: “Add Positive R2 Move” and 7: “Add Negative R2

Move” introduce Reidemeister Type II (R2) crossings pairs; 8: “Remove R2 Move”

removes such crossing pairs; 9: “Apply R3 Move” to implement Reidemeister Type

III (R3) transformations; 10: “Far-Commuting Move” for changing the order of dis-

tant crossings in the braid word; 11: “Add Positive Crossing” and 12: “Add Negative

Crossing” to add new crossings; and 0: “Remove Crossing” to eliminate crossings.

The only moves that change the Euler characteristic are adding or removing crossings

(which change the Euler characteristic by −1), and any move that creates an unknot-

ted, unlinked strand (which changes the Euler characteristic by +1) [3]. Thus, our

goal is to create unknotted, unlinked strands in the braid, by adding and removing

as few crossings as necessary.

Our state space has dimension 227. This is because all of the information about

the knot is one-hot encoded. This includes the cursor location, Euler characteristics,

and whether the knot has been solved or not (see Figure 23).

The reward in this environment is calculated based on several factors. First, it

subtracts a small inaction penalty at each time step to provide incentive for the agent

to take actions. As mentioned above, most surfaces we will obtain have a negative

Euler characteristic, so the inaction penalty encourages our agent choose meaningful

actions right away. The inaction penalty is a hyperparameter that we chose to be 0.1

throughout our experiments. For each action the environment computes the change

in Euler characteristic of the knot component before and after the action and adds

this difference to the reward function. This encourages the agent to simplify the

knot, aiming for a higher Euler characteristic that indicates a more straightforward

topological structure. Additionally, if the maximum number of allowed actions is

reached (a hyperparameter that we changed depending on the complexity of the

23

knot), a final penalty (another hyperparameter, set to 350 throughout all experiments)

is applied to motivate the player to reach a solution within a certain timeframe.

This setup is designed to maximize the cumulative reward by maximizing the Euler

characteristic while minimizing the number of actions taken.

4.1 Using PPO

The algorithm we decided to use for this problem was PPO. We made this choice for a

few reasons. One major reason is the clipped surrogate objective that PPO employs to

prevent large policy updates, resulting in greater stability and robustness. Another

reason we decided to use PPO is because of how efficiently it can be parallelized.

Throughout the training process, we trained our model on four GPUs at once. Since

parallel training with PyTorch is a relatively easy task, parallelizing PPO across four

GPU’s enables training rates to be about four times faster than if we trained on only

one GPU.

One important task in deep learning is finding the optimal hyperparameters for

the model and situation at hand, and our situation is no different. For our hyperpa-

rameters, we chose

• Learning rate = 5e-3

• Epochs = 200

• Environment samples = 100

• γ = 1

• Batch size = 256

• ε = 0.15

• Policy epochs = 30

24

The learning rate of 5e-3 controls the step size for updating the policy. A smaller

learning rate makes the updates more conservative, while a larger learning rate can

lead to faster convergence but risks overshooting the optimal policy. Our learning rate

of 5e-3 is a moderate learning rate that is a reasonable starting place. The number

of training epochs (epochs) is set to 200. This is a long training time, but our task

is a difficult one that requires a lot of training. Environment samples represent the

number of episodes collected from the environment for each iteration, impacting policy

stability.

The discount factor γ = 1 implies that we did not discount future rewards. We

used this value for two reasons. One reason is that setting γ = 1 can be suitable

for tasks requiring long-term planning. The second–and most import reason–is that

when γ < 1 our agent learned to put off taking any actions that would result in a

temporary negative reward until after those rewards had been discounted a sufficiently

large amount. When we set γ = 1 the agent no longer made those unnecessary filler

moves, resulting in more direct solutions.

A batch size of 256 was chosen to balance the accuracy and efficiency of policy

updates. Larger batch sizes can improve the accuracy of the policy gradient estimate

but may require more memory and computation. We found a batch size of 256 is

a reasonable choice for balancing accuracy and efficiency. The clipping parameter

ε = 0.15 controls policy clipping during a PPO update. As mentioned in Section 2.2,

clipping helps prevent large policy updates that could destabilize training. We found

that a value of ε = 0.15 resulted in moderate clipping, helping maintain stability

during training. This differs from the standard ε = 0.10 value common for PPO.

Finally, setting the policy update epochs to 30 allowed multiple policy updates per

iteration, aiding in policy fine-tuning.

Recall that PPO uses two different neural networks: a policy and value network.

For these networks, the number of parameters contained in each is 28877 and 28673,

25

respectively. While this is quite small compared to modern state-of-the-art deep

learning models, we found it to be sufficient for our needs. Additionally, increasing

the number of parameters in our models may result in running out of memory on

the GPUs if we were not careful. We reduced the risk of that issue with our current

parameter sizes.

In addition to finding optimal sizes for our models, we also needed to choose

appropriate loss, activation, and optimization functions. Since we have two different

models, we chose two different loss functions. We used mean squared error for our

value function, and for our policy function we used the clipped surrogate function as

described in Section 2.2. These are both typical loss functions when using PPO.

For our activation function, we used penalized tanh. Penalized tanh is an activa-

tion function mentioned in Xu et. al. [6]

f(x) =


tanh (x) x > 0

0.25 tanh (x) x ≤ 0.

(1)

This function is rather simple, but Xu et. al. found it to outperform ReLU and leaky

ReLU on deep CNNs. While our model is obviously not a CNN, we found it effective

in our situation.

Finally, for our optimizer, we used AdaBelief as put forth by Zhuang et. al. [7]

AdaBelief is very similar to the popular Adam optimizer with a simple twist. Zhuang

et. al. found that AdaBelief performed similarly to stochastic gradient descent (SGD)

and Adam on tasks such as image classification and GAN training. While we are not

doing image classification nor training a GAN, we found AdaBelief to contribute to

the success of our model.

26

5 Results

Before addressing the results achieved by our agent we describe how the agent was

trained. Starting off, the agent is given a range of crossing numbers to consider. The

environment samples a random knot between those crossing numbers and presents it

to the environment. The agent is given 500 chances to solve this knot. (Each epoch

provides 100 chances for the agent, so the agent is given 5 epochs total.) If the agent

solves the knot 20 times (allowing for the agent to optimize a solution it found for

that knot) a new knot is sampled and the agent begins again. If the agent does not

solve it 20 times in those 500 attempts, we sample and give the agent a new knot

attempt. This process takes approximately 3-and-a-half hours on our GPU for each

crossing number range.

We started off by training on knots with five crossing or less, then slowly increased

the complexity. We found that allowing our algorithm to see and work on easier knots

to solve while still being challenged by higher crossing knots aided in the success of

the algorithm long term. In our experiments, our algorithm learned to construct

minimal genus slice surfaces for (some, but not all) knots up to 13 crossings.

We separate our result figures below into two main parts. We have the raw training

score data on the left panel. Each graph (and associated color) represents the model’s

progress on a different GPU. Since we trained on four GPUs at once, we have four

different sets of training data. If the agent did not find a slice surface with the correct

Euler characteristic for the knot it was given a reward of −350. Thus, when the agent

is successful the graph contains a spike near 0, but when unsuccessful the reward does

not climb above −350.

The right panel represents the exponential moving average (EMA) for the reward.

The exponential moving average is a type of moving average that places more weight

on recent data points, making it more responsive to recent changes in the data. The

27

formula for the exponential moving average is calculated as:

EMAt = (1− α) · EMAt−1 + α ·Xt

Where:

• EMAt is the EMA at time t.

• EMAt−1 is the EMA at the previous time step.

• Xt is the value of the time series at time t.

• α is the smoothing factor or weight applied to the most recent data point. The

smaller the α, the more weight given to older data.

For these graphs, we used a smoothing factor of α = .01. In the first few graphs,

you can see that the EMA increases as training progresses, implying that the agent

is becoming more and more successful at finding the surfaces with the correct Euler

characteristic. However, as the complexity of the knots increases we see the agent

struggle somewhat. This is not surprising because this simply means that the agent

takes longer to solve more complicated knots.

28

29

30

31

Below is an example of our agent finding a minimal genus slice surface for the

10 crossing knot with braid word [2,−1,−1, 3, 1, 2,−4, 3, 4, 1]. For this knot, our

algorithm received a reward of 0.7 by performing the moves [8, 10, 10, 8, 10, 8, 8, 8,

0, 8, 0, 8, 8, 8, 9, 8, 8, 10, 0, 8, 8, 8, 9, 1, 8, 9, 8, 8, 8, 0]. Here is a visualization of

these moves being applied to the prescribed knot.

32

6 Future Work

One improvement that could be made to this project in the future to improve perfor-

mance is using GPUs with larger memory capacity. Our model size was ultimately

33

limited to the memory on the GPU, which could very well be what kept us from con-

sistently finding minimal genus slice surfaces for knots with more than 13 crossings.

Additionally, we might not have been using the most effective way to represent

knots. The use of alternative knot representation methods (other than braids) could

yield more effective approaches, potentially enhancing the overall performance of our

deep reinforcement learning model in uncovering the minimal slice genus of knots

With ongoing research in the Deep RL space new algorithms are being developed

which outperform PPO. Exploring and incorporating these future developments will

be instrumental in increasing the progress we have made for finding the minimal slice

genus of knots.

34

References

[1] Collin C. Adams. The Knot Book. American Mathematical Society, 2004. isbn:

978-0821836781.

[2] Joan S Birman. Braids, links, and mapping class groups. 82. Princeton University

Press, 1974.

[3] Mark C Hughes. “Braiding link cobordisms and non-ribbon surfaces”. In: Alge-

braic & Geometric Topology 15.6 (2016), pp. 3707–3729.

[4] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR

abs/1707.06347 (2017). arXiv: 1707.06347. url: http://arxiv.org/abs/

1707.06347.

[5] Heinrich Seifert. “Über das Geschlecht von Knoten”. In: Mathematische Annalen

110 (1935), pp. 571–592. doi: 10.1007/BF01448044.

[6] Bing Xu, Ruitong Huang, and Mu Li. “Revise Saturated Activation Functions”.

In: CoRR abs/1602.05980 (2016). arXiv: 1602.05980. url: http://arxiv.org/

abs/1602.05980.

[7] Juntang Zhuang et al. “AdaBelief Optimizer: Adapting Stepsizes by the Belief

in Observed Gradients”. In: CoRR abs/2010.07468 (2020). arXiv: 2010.07468.

url: https://arxiv.org/abs/2010.07468.

35

7 Appendix

7.1 Model Architecture

As mentioned above, PPO utilizes two networks: the policy and value networks. For

our work, we used simple PyTorch linear layers with our PenalizedTanH function

separating them. These are fairly simple networks. The size of our model simply

came down to making our networks as large as possible while still fitting them on the

GPUs we were using.

Listing 1: Our Policy Network

class PolicyNetwork(nn.Module):

def __init__(self , state_size , action_size):

super ().__init__ ()

hidden_size = 8

self.net = nn.Sequential(

nn.Linear(state_size , hidden_size *3),

PenalizedTanH (),

nn.Linear(hidden_size *3, hidden_size *4),

PenalizedTanH (),

nn.Linear(hidden_size *4, hidden_size *6),

PenalizedTanH (),

nn.Linear(hidden_size *6, hidden_size *8),

PenalizedTanH (),

nn.Linear(hidden_size *8, hidden_size *12),

PenalizedTanH (),

nn.Linear(hidden_size *12, hidden_size *8),

PenalizedTanH (),

nn.Linear(hidden_size *8, hidden_size *6),

PenalizedTanH (),

36

nn.Linear(hidden_size *6, hidden_size *4),

PenalizedTanH (),

nn.Linear(hidden_size *4, hidden_size *2),

PenalizedTanH (),

nn.Linear(hidden_size *2, action_size),

nn.Softmax(dim =1))

def forward(self , x):

return self.net(x)

37

Listing 2: Our Value Network

class ValueNetwork(nn.Module):

def __init__(self , state_size):

super ().__init__ ()

hidden_size = 8

self.net = nn.Sequential(

nn.Linear(state_size , hidden_size *3),

PenalizedTanH (),

nn.Linear(hidden_size *3, hidden_size *4),

PenalizedTanH (),

nn.Linear(hidden_size *4, hidden_size *6),

PenalizedTanH (),

nn.Linear(hidden_size *6, hidden_size *8),

PenalizedTanH (),

nn.Linear(hidden_size *8, hidden_size *12),

PenalizedTanH (),

nn.Linear(hidden_size *12, hidden_size *8),

PenalizedTanH (),

nn.Linear(hidden_size *8, hidden_size *6),

PenalizedTanH (),

nn.Linear(hidden_size *6, hidden_size *4),

PenalizedTanH (),

nn.Linear(hidden_size *4, hidden_size *2),

PenalizedTanH (),

nn.Linear(hidden_size *2, 1))

def forward(self , x):

return self.net(x)

38

